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Abstract

Background

The Pacific region is an area unique in the world, composed of thousands of islands with dif-

fering climates and environments. The spreading and establishment of the mosquito Aedes
aegypti in these islands might be linked to human migration. Ae. aegypti is the major vector

of arboviruses (dengue, chikungunya and Zika viruses) in the region. The intense circulation

of these viruses in the Pacific during the last decade led to an increase of vector control

measures by local health authorities. The aim of this study is to analyze the genetic relation-

ships among Ae. aegypti populations in this region.

Methodology/Principal Finding

We studied the genetic variability and population genetics of 270 Ae. aegypti, sampled from

9 locations in New Caledonia, Fiji, Tonga and French Polynesia by analyzing nine microsat-

ellites and two mitochondrial DNA regions (CO1 and ND4). Microsatellite markers revealed

heterogeneity in the genetic structure between the western, central and eastern Pacific

island countries. The microsatellite markers indicate a statistically moderate differentiation

(FST = 0.136; P < = 0.001) in relation to island isolation. A high degree of mixed ancestry

can be observed in the most important towns (e.g. Noumea, Suva and Papeete) compared

with the most isolated islands (e.g. Ouvea and Vaitahu). Phylogenetic analysis indicated

that most of samples are related to Asian and American specimens.

Conclusions/Significance

Our results suggest a link between human migrations in the Pacific region and the origin of

Ae. aegypti populations. The genetic pattern observed might be linked to the island isolation

and to the different environmental conditions or ecosystems.
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Author Summary

Aedes aegypti is the major arbovirus vector in the Pacific region. The spread of this mos-
quito in the different islands seems to be linked to human activities at the beginning of the
twentieth century. Since 2010, occurrence of arbovirus outbreaks increased in this region,
with the co-circulation of dengue, chikungunya and Zika viruses. The lack of vaccines and
treatments for these pathogens led the health authorities to implement vector control mea-
sures. In this study, we present the genetic structure and the phylogenetic data obtained
from the analysis of 270 Ae. aegypti collected in the Pacific region. The infestation of the
islands seems to have American and Asian origins. The genetic structure of the vector pop-
ulations indicates a differentiation of the mosquitoes between the western, central and
eastern Pacific island countries and the specific island isolation context. This differentia-
tion could be related to the different environmental conditions in each island country.

Introduction
Dengue fever is the most prevalent arthropod-borne viral infection of humans in tropical and
subtropical countries [1]. In the Pacific region dengue virus outbreaks have occurred regularly
since World War II [2]. However, over the last 5 years, the arbovirus outbreak profile in the
Pacific region has changed. Indeed, the predominant circulation of a single dengue virus sero-
type moved on to the co-circulation of several dengue serotypes, along with the emergence of
chikungunya and Zika viruses [2–5].

Dengue, chikungunya and Zika are arboviruses transmitted to humans through the bites of
mosquitoes belonging to the genus Aedes, subgenus Stegomyia. In the Pacific region, many of
these vectors are endemic species members of the “scutellaris” group, which, according to
Belkin [6], could have derived from a single original species unintentionally introduced by the
first Austronesian navigators 1500 to 2000 years ago. Owing to the very particular conditions
of this region including strict isolation and ecological differences between the islands, it under-
went a speciation process that led to the separation into different species [6, 7]. The introduc-
tion of Aedes aegypti was more recent, this mosquito was first recorded in the Pacific in the late
nineteenth and the early twentieth century [8]. At present, the main Aedes vectors are Ae.
aegypti, Aedes albopictus, Aedes polynesiensis along with nine other Aedes potential vectors [8].
Ae. aegypti is present in most Pacific islands with the exception of Futuna and very few other
isolated islands. Recently introduced, from South Asia into Western Pacific islands, Ae. albopic-
tus is now established as far as the Kingdom of Tonga. Ae. polynesiensis is widespread in the
Eastern part of Oceania, including Fiji, Samoa Islands, French Polynesia, and Pitcairn [9].
Regarding this distribution, Ae. aegypti is the most widespread arbovirus vector in the Pacific
with its presence reported in a majority of islands. This vector is a domestic species, closely
associated with human migrations and transportation, commerce and urbanization [10, 11].

Pacific islands have experienced intense population migrations since the early nineteenth
century with the first wave of European colonization [12]. During the twentieth century, this
migration continued due to the implementation of various business and industrial activities.
Thus many Asian workers immigrated into New Caledonia, French Polynesia [13] and Fiji.
Population flows between the different Pacific islands have always been observed. This immi-
gration was highly influenced by the vehicular languages used, being more intense between
French speaking islands or between English speaking islands [12]. The introduction of Ae.
aegypti in different islands over time might be linked to the Pacific history of human migra-
tions. In French Polynesia it was first reported in 1924 only in Tahiti, and then in the
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Marquesas Islands and in the Austral Islands sixty years later [14] but the first dengue epidemic
was described in the middle of the nineteenth century [15] and might be due to Ae. polynesien-
sis which is a competent dengue vector [16, 17]. The first reported dengue epidemic in New
Caledonia was described during the 1880s. This epidemic episode clearly demonstrates the
presence of Ae. aegypti, as no other dengue vector had been reported at this date or later on
[18]. In Fiji and Tonga, vector descriptions reported the presence of Ae. aegypti from the 1960s
[6, 19], but dengue epidemics were recorded before the 1950s [2]. During World War II, the
exchanges between America, Asia, Europe and the Pacific islands increased and may have
impacted the distribution of Ae. aegypti [20].

Before 1960, no systematic control measures were implemented against Ae. aegypti in the
South Pacific islands, except for international airports and harbors [19]. Due to an increase in
the frequency and intensity of dengue outbreaks in the second half of the twentieth century,
French Polynesia and New Caledonia health authorities adopted similar vector control strate-
gies involving a combination of insecticide spraying and community awareness raising, aimed
at source reduction. These strategies resulted in a decrease of the mosquito’s presence in these
island groups [21–23]. In 2003, in Fiji, the Ministry of Health decided to assess a larval source
reduction campaign to reduce the density of the vector’s breeding sites [24]. In Tonga the
WHO decided in 1984 to increase the vector control effort at the international airport with
insecticide applications and aircraft disinsection. These vector control operations did not result
in elimination of Ae. aegypti, but they created different environments and exerted selective
pressure.

To our knowledge, no studies have investigated the genetic diversity of Ae. aegypti in the
Pacific region except in French Polynesia, using isoenzymes [11] and alloenzymes [25]. These
studies demonstrated a link between the genetic diversity of Ae. aegypti populations, human
population density, and vector control intensity. The recent arbovirus outbreak waves in the
Pacific region highlight the need to improve our knowledge of Ae. aegypti in the Pacific. The
aim of this study is to better understand the genetic structure and the phylogeny of this vector
on the Pacific region. For this purpose, we analyzed a set of nine microsatellites and two mito-
chondrial DNA sequences on 270 Ae. aegypti specimens collected in nine locations distributed
in four different Pacific Island Countries and Territories.

Materials and Methods

Description of the study area
The Pacific region is an area unique in the world, composed of thousands of islands, high vol-
canic and low coral (atoll) islands, separated by vast stretches of ocean. Our sample sites are sit-
uated between longitudes 165° East and 139° West, spanning a region approximately 6,000 km
wide. Latitudes of our sample sites are between 9° South and 23° South. There are several tropi-
cal climatic zones across the South Pacific region with different environments according to the
latitude, localization within the islands and human influence. In New Caledonia (NC), temper-
atures are generally mild although with marked seasons. Poindimie, situated in a rural area
exposed to dominant winds, has heavy rainfall whereas Noumea, the main city, is much drier.
Ouvea is a flat coral island with no water supply connection (Fig 1). In Fiji (FJ), both sample
sites are situated in peri-urban settings. Lautoka, a city on the leeward side of the island, is situ-
ated in a dry area. Suva, on the windward side of the same island, has a wet climate. In Tonga
(TG), Havelu is a suburb of Nuku’alofa, capital of the country, on the island of Tongatapu, a
flat coral island, but, where piped water supply is available, unlike on Ouvea (Fig 1). In French
Polynesia (FP) the climate is different between the islands. Tubuai is the southernmost sample
site of all. It is a rural island with temperate climate and distinct seasons. Papeete is the main

Pacific Aedes aegyptiGenetic Characterization

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004374 January 22, 2016 3 / 17



city on Tahiti, with a humid tropical maritime climate and high temperature with slight sea-
sonal variations. The village of Vaitahu on the island of Tahuata in the Marquesas Islands, is
the northernmost sample site with warm conditions year round (Fig 1).

Mosquito sampling
Mosquitoes were sampled at the immature stage (larvae and pupae) in the four island coun-
tries: New Caledonia (NC, 3 sites), French Polynesia (FP, 3 sites), Fiji (FJ, 2 sites) and Tonga
(TG, 1 site) (Fig 1). For each sampling site a central spot was specified (Table 1). All potential

Fig 1. Pacific map locating Ae. aegypti sampling sites, 2013. The nine sample sites are represented by the red dots.

doi:10.1371/journal.pntd.0004374.g001

Table 1. Ae aegypti sampling sites: coordinates and date in Pacific islands, 2013.

Sample name Locality Country Date Latitude Longitude

Poi-NC Poindimie New Caledonia Jul. 2013 20°56'56" S 165°19'58" E

Nou-NC Noumea New Caledonia Jul. 2013 22°13'57" S 166°25'25" E

Ouv-NC Ouvea (Loyalty Islands) New Caledonia Jul. 2013 20°39'00" S 166°32'38" E

Lau-FJ Lautoka (Viti Levu Island) Fiji Oct. 2013 17°39'33" S 177°24'17" E

Suv-FJ Suva (Viti Levu Island) Fiji Oct. 2013 18°05'13" S 178°27'43" E

Hav-TG Havelu (Nuku’alofa Tongatapu Island) Tonga Oct. 2013 21°09'03" S 175°13'12"W

Tub-FP Mataura (Tubuai Australes Islands) French Polynesia Nov. 2013 23°20'49" S 149°28'43" W

Pap-FP Papeete (Tahiti) French Polynesia Aug. 2013 17°31'38" S 149°33'00" W

Vai-FP Vaitahu (Tahuata Marquisas Islands) French Polynesia Jan. 2013 9°56'14" S 139°06'29" W

Thirty mosquitoes were analyzed for each sampling site.

doi:10.1371/journal.pntd.0004374.t001
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breeding sites within a 200 m radius were searched and mosquito larvae and pupae were col-
lected (three to eleven containers were sampled per site). A first morphological identification
was carried out. Aedes-like larvae were reared to adulthood for confirmation and the Ae.
aegypti specimens collected. Thirty such specimens from each site were stored in 100% ethanol
at -20°C for molecular analysis.

DNA extraction
Total DNA was extracted from adult mosquitoes using the DNeasy Blood & Tissue Kit (Qia-
gen) with a first step of mechanic lysis with 2.38 mm RNase/DNase free metal beads at 3000
rpm during 1 min and stored at -20°C.

Microsatellite analysis
Individual genotypes were scored for 11 previously published microsatellite loci: AC1, AC2,
AC4, AG1, AG2, AG5, CT2 [26], A1, B2, B3 [27] and 145TAAA1 [28]. DNA was amplified in
a Veriti 96 well Thermal Cycler (Applied Biosystems) using the GoTaq G2 Flexi DNA Poly-
merase (Promega) as described in previous studies with slight modifications [26–28]. PCR
products were analyzed using a Genetic Analyser 3130xl (Applied Biosystems). The results
were genotyped with Peak Scanner software (Applied Biosystems) and double-checked (i. e.,
read by two independent people).

The deviation from Hardy-Weinberg equilibrium for each locus was tested with GenAlex
6.5 [29]. MicroChecker v2.2.3 [30] was used to calculate the probability of null allele occur-
rence in each locus within each population. The number of alleles and the estimated allele rich-
ness [31] were determined by FSTAT2.9.3 software [32]. The FIS for each population for all loci
were calculated using Genetix [33] and Arlequin v3.5.1.2 [34]. The Analysis of Molecular Vari-
ance (AMOVA) and the FST were computed using Arlequin v3.5.1.2 software [34]. The popula-
tion genetic structure was determined using STRUCTURE software [35]. The Bayesian
approach was chosen to infer the number of genetic clusters (K). We performed twenty inde-
pendent runs, K from 1 to 15, with a burn-in period of 100,000 iterations and a total of
1,000,000 Markov Chain Monte Carlo iterations. The program Structure Harvester [36] was
used to determine the most probable number of clusters by calculating the ΔK value [37]. The
web server CLUMPAK was used to summarize and visualize the STRUCTURE results [38]. A
Mantel test of correlation between geographical and genetic distance matrices was tested on
IBD web server 3.23 [39] with 1,000 permutations.

MtDNA sequencing analysis
Amitochondrial DNA analysis was performed for two genes: CO1 [40] and ND4 [41]. The 270
DNA samples were amplified and sequenced with the primers previously published. Amplified
fragments were purified with the MinElute PCR Purification kit (Qiagen) and sequenced using
BigDye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) on a Genetic Analyser
3130xl (Applied Biosystems).

Sequences were analyzed using Staden Package (MRC Cambridge, England), nucleotide
sequences were aligned with BioEdit [42]. The haplotype numbers were assigned in reference
to the published Ae. aegypti sequence from Cambodia for CO1 (GenBank accession No.
JQ926688) and for ND4 (GenBank accession No. JQ926722). The nucleotide diversity (π), the
Tajima [43], the Fu and Li [44] and Fu [45] tests were computed by DNASP v5 [46] to deter-
mine the neutrality of the populations. The phylogenetic networks based on CO1 and ND4
sequences were constructed using a reduced-median algorithm [47] as implemented in the
Network program [48]. MRBAYES 3.1.2 software [49] was used to make a CO1-ND4
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combined analysis using sequences obtained in this study and retrieved from GenBank. Four
Markov chains were run for 2,000,000 generations with a 25% burn-in. The tree was drawn
with FigTree v1.4.2 (Institute of Evolutionary Biology, University of Edinburgh). A Principle
Coordinate Analysis (PCoA) of the mtDNA sequences was realized with DARwin software
[50].

Results

Microsatellites analysis
Genetic variability of the samples. The 11 microsatellite loci allowed the identification of

genotypes from the 270 Ae. aegypti adult mosquitoes sampled from the nine sites. The presence
of a null allele was suspected at loci AG2 and 145TAAA1, which were therefore excluded from
the analysis, leading to a dataset of 9 loci. A total of 57 alleles was observed for all samples
(Table 2). The allelic richness was determined as 6 for the whole population ranging from
4 alleles for locus AC2 to 9 alleles for locus AG5. Regarding the allelic richness, no significant
difference was observed among the different sampling sites or the different island countries.

Genetic structure of the samples
The AMOVA results indicated statistically moderate genetic differentiation for all samples
(FST = 0.136; P< = 0.001). FST among the studied sample sites ranged from 0.05 to 0.24
(Table 3). The highest FST value was obtained between Ouvea (NC) and Vaitahu (FP) with
0.24. The two lowest results were obtained between Suva (FJ) and Lautoka (FJ) on one hand,
while between Poindimie (NC) and Noumea (NC) on the other hand with a score of 0.05.
Globally the FST results for Vaitahu (FP) were higher than the others (ranging from 0.13 to
0.24). Moreover, statistically high differences were observed between the New Caledonia sam-
ples and the samples of central (FJ and TG) and eastern Pacific (FP). The results of the Mantel
test demonstrated a significant correlation between the genetic differentiation and the geo-
graphical distance (r = 0.6164; P< 0.001) (Fig 2) for the Pacific samples analyzed.

The Bayesian analysis performed, with the Evanno et almethod [37], revealed that the most
likely number of clusters were K = 2, K = 4 (highest probability) and K = 7. These three cluster-
ing models were further analyzed. The two-cluster plot (K = 2) indicates a differentiation
between the samples of New Caledonia (West Pacific) on one hand, Fiji, Tonga (Central
Pacific) and French Polynesia (East Pacific) on the other hand (Fig 3). The four-cluster plot
(K = 4) highlights a differentiation between the samples of Fiji and Tonga. The Suva samples
seemed to be more differentiated than the Lautoka or Havelu samples. For French Polynesia
the Vaitahu samples appeared to be a separate cluster and the Papeete individuals looked to be
more diversified than the other FP samples. The seven-cluster plot (K = 7) confirmed the
results obtained with the AMOVA: a high diversity for Suva and Papeete, mid-diversity for
Noumea/Poindimie and Lautoka and isolation of Ouvea, Havelu, Tubuai and Vaitahu.

MtDNA phylogeny analysis
CO1 gene diversity. All 270 individuals were analyzed for their CO1 sequence. The 711

bp alignment revealed the presence of seven distinct haplotypes (Figs 4, 5 and S1 Table, S2
Table) and a nucleotide diversity of π = 0.00177. Haplotype I (frequency = 0.25) was present in
all islands except in Poindimie (NC) and in Fiji. Haplotype II (frequency = 0.24) was present in
New Caledonia, Fiji and Vaitahu (in FP). Haplotype III (frequency = 0.21) was found in eastern
islands (FP). Haplotype IV (frequency 0.18) seemed to be exclusively present in NC. The hap-
lotype V (frequency = 0.09) was present only in Fiji. Haplotype VI (frequency = 0.02) was
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present only in Papeete (FP). And haplotype VII (frequency = 0.01) appeared to be exclusive to
Suva (FJ). Haplotype II seemed to be the link between the different CO1 haplotypes in the
Pacific region (Fig 5A). Haplotype VI appeared to derive from haplotype I with a single muta-
tion. A link between haplotype VII and haplotypes III and V seemed to be present. Tajima’s D
statistic (D = 1.02758, P> 0.10), used to determine the departure from neutrality, was not sig-
nificant but suggested a balancing selection or a decrease in population size due to the presence
of multiple alleles, some at low and other at high frequencies. Fu and Li’s statistics were positive
but not significant (F� = 1.17029, P> 10; D� = 0.95715, P> 0.10) and confirmed the Tajima’s
D result.

Table 3. Pairwise FST values for the nine populations studied and geographic distances between the
sampling sites (in km).

Poi-NC Nou-NC Ouv-NC Lau-FJ Suv-FJ Hav-TG Tub-FP Pap-FP Vai-FP

Poi-NC - 182 130 1318 1412 2017 4643 4737 6050

Nou-NC 0.051 - 176 1255 1338 1899 4505 4618 5946

Ouv-NC 0.094 0.097 - 1188 1282 1894 4527 4613 5923

Lau-FJ 0.161 0.110 0.185 - 122 865 3499 3498 4763

Suv-FJ 0.122 0.094 0.148 0.051 - 744 3378 3383 4656

Hav-TG 0.156 0.145 0.168 0.136 0.064 - 2657 2720 4053

Tub-FP 0.187 0.176 0.154 0.112 0.110 0.175 - 647 1854

Pap-FP 0.108 0.117 0.149 0.087 0.095 0.141 0.083 - 1408

Vai-FP 0.162 0.172 0.238 0.166 0.148 0.198 0.188 0.130 -

Below diagonal, FST values, statistical significance was 0.05. Above diagonal, geographical distances (km)

between the sample sites.

doi:10.1371/journal.pntd.0004374.t003

Fig 2. Correlation between the geographic and genetic distance matrices. The regression line
corresponds to the standard major axis regression between pairwise genetic distances and logarithmic
geographic distances with equation: Fst = - 0.1620 + 0.09113�log (geographic distance). The relationship
was significant (Mantel test: Z = 16.3746; r = 0.6164; P < 0.001).

doi:10.1371/journal.pntd.0004374.g002
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ND4 gene diversity. Partial ND4 sequence was analyzed for all individuals (Figs 4, 5 and S1
Table, S2 Table). The 320 bp alignment revealed the presence of three distinct haplotypes and a
nucleotide diversity of π = 0.00203. Haplotype I (frequency = 0.59) was present in all Pacific sam-
ples. As for haplotype II (frequency = 0.22) the results demonstrated its presence only in central
and eastern islands from Suva to Vaitahu. Haplotype III (frequency = 0.19) was present in the
western islands from Poindimie (NC) to Suva (FJ). Haplotypes II and III seem to derive from
haplotype I with only a single nucleotide difference (Fig 5B). The departure from neutrality, indi-
cated by Tajima’s D statistic, was not significant (D = 1.131386, P> 0.10). Fu and Li’s statistics
were positive but not significant either (F� = 0.99728, P> 0.10; D� = 0.61853, P> 0.10).

Fig 3. Model-based clustering of 270 Ae. aegypti individuals using STRUCTURE software. Each individual is represented by a single vertical line;
sample sites are separated by a black line; the whole sample is divided into K colors representing the number of clusters assumed. The colors show the
estimated individual proportions of cluster membership.

doi:10.1371/journal.pntd.0004374.g003

Fig 4. Representation of the MtDNA haplotype frequencies within the sample sites. The left circles indicate the CO1 haplotype frequencies and the right
circles the ND4 haplotype frequencies. The arc length of each slice is proportional to the haplotype frequencies (as an example a semicircle represents 15
samples). Haplotype frequencies are indicated in S1 Table.

doi:10.1371/journal.pntd.0004374.g004
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Associated CO1-ND4 sequences analysis. The sequences of CO1 and ND4 were
concatenated to perform a phylogenetic analysis with published mtDNA sequences from
extra-Pacific Ae. aegypti specimens (Fig 6 and S3 Table). The phylogenetic tree obtained indi-
cated the presence of a main combined haplotype in Pacific samples (CO1-I / ND4-I) originat-
ing from Asia. Specimens from the West Pacific (NC and FJ) were both linked to American
mosquitoes and to Asian mosquitoes. A haplotype of Papeete-FP originated from Asia. Two
haplotypes of Suva-FJ seemed to be linked to Australian specimens (CO1 mtDNA) and Asian
specimens. The other samples principally of French Polynesia, Tonga and Suva-FJ were not
clearly affiliated. The PCoA performed on associated CO1-ND4 sequences (S1 Fig) corrobo-
rated the results obtained. In fact, it underlined three origins: Asian, American and Australian.

Discussion
The spread of Ae. aegypti in the Pacific took decades [6, 14, 18, 19]. The presence of this vector
contributed to an explosive arbovirus situation in the Pacific region since the year 2010. Pacific
Island Countries and Territories tried to limit the importation of Ae. aegypti in new territories
through the establishment of control measures at sea-ports and airports. These measures may
have prevented the increase of mosquito populations, but no evidence of eradication of the vec-
tor was ever recorded as it was in South American or Mediterranean countries [40, 51, 52]

Our results indicate the presence of multiple clusters in the mosquito samples from the
Pacific islands [40]. Our Ae. aegypti samples are linked to Ae. aegypti originating from the
Americas, South-East Asia and Australia (Fig 6 and S1 Fig). The introduction of the Asian line-
age in New Caledonia could be linked to i) whaling industry and the sandalwood commerce
between China/Australia/Pacific (Fiji and New Caledonia) in the years 1800–1850 [53] and ii)
the immigration of Asian workers to New Caledonia during the years 1900–1940 for the min-
ing industry [54]. In French Polynesia the presence of the Asian lineage could be linked to a

Fig 5. Median-joining network obtained with the haplotypes of all samples. A- Representation for the mtDNA CO1 sequences. B- Representation for
mtDNA ND4 sequences. The diameters of grey circles represent the frequency of each haplotype for all individuals. The red number indicates the position of
the mutation on the analyzed sequences.

doi:10.1371/journal.pntd.0004374.g005
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substantial immigration of Chinese people, with three waves of immigration: the first one in
1865, then from 1907 to 1914 and lastly from 1921 to 1925 [13]. The presence of Ae. aegypti of
the American origin in the Pacific could be associated with the whaling activity during the
XIXth century, and to the presence of the US navy during World War II. From 1942 to 1945,
New Caledonia was a support base and a key location for the US and Allied troops fighting in

Fig 6. Phylogenetic tree obtained with a Bayesian inference of concatenated CO1 and ND4 sequence data.Numbers in parentheses indicate the
number of samples belonging to this haplotype. For the Australian sample, only the CO1 sequence was available. Rooting was inferred from DNA sequences
of Anopheles pullus andCulex quinquefasciatus but were not represented for clarity

doi:10.1371/journal.pntd.0004374.g006
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the Pacific War. The NC human population doubled during this period, and a dramatic
increase in trade and economic activity took place. Furthermore, between the years 1880 and
1910, most importations into New Caledonia came from Australia, the United States and
France with at least one ship calling at Noumea every two days [55]. In Fiji, the link with the
Australian cluster could be related to the sugar cane and sandalwood trade between the two
countries [53]. The principal commercial exchanges of Fiji, where a large proportion of the cur-
rent population is of Indian origin, were with India, South-East Asia, Australia, the United
States, and Europe [55]. The same commerce pattern is valid for Tonga. It is important to note
that although this Ae. aegyptimigration through the Pacific started during the nineteenth cen-
tury, it might still be a current phenomenon. Ae. aegypti was first recorded in New Caledonia’s
outer islands Mare and Lifou only in the 90’s and on Isle of Pins in 2003 [56]. In French Poly-
nesia, Ae. aegypti was first recorded in the Austral Islands in 1984 [14]. On another hand, Ae.
albopictus is currently invading the Pacific region, it has been reported in Fiji in 1988 [57], in
Tonga in 2011 [58] and in Vanuatu in 2012 [59]but not yet in French Polynesia and New Cale-
donia [8, 60].

The presence of mitochondrial pseudogenes was observed in Fiji mosquitoes (two samples
for Suva and one for Lautoka) for CO1 mtDNA (Haplotype CO1-V and CO1-VII, Fig 5 and S2
Table) with difficult distinction between a C and a T nucleotide. The presence of pseudogenes
has already been demonstrated in Ae. aegypti nuclear genome. This genetic phenomenon,
called heteroplasmy, was highly prevalent in previous studies [61, 62]. Among all the popula-
tions studied, it is interesting to note that this heteroplasmy was found only in Fiji samples,
where haplotype distribution from eastern and western Pacific overlap, thus suggesting that
Fiji might act as a hub regarding Ae. aegypti diversity.

In general, the genetic diversity observed within the Pacific was lower than the genetic diver-
sity observed in studies implemented in Africa [63] or South America [51]. Comparing these
works to our context, a decrease in diversity was commonly observed in other islands and espe-
cially in Martinique [64] or Dominica [51] in the Caribbean. The genetic diversity seemed to
be linked with the isolation of the island, and a low level of genetic exchanges between different
islands was shown in French Polynesia [25, 64]. These results were confirmed by the presence
of high correlation in the Mantel test (Fig 2) and suggest that even short range mosquitoes like
Ae. aegypti can disperse readily within an island, each island having its own diversity.

Our results also indicate a clear structure differentiation between New Caledonia samples
and the mosquitoes of Central (FJ and TG) and East Pacific (FP) (Fig 3). It is interesting to
note, that mosquito specimens collected on the same island (ie: Noumea/Poindimie and Lau-
toka/Suva) are more homogeneous compared to samples from different islands (ie: Ouvea,
Havelu, Tubuai and Vaitahu) which are more isolated. As a fact, in 1958, Ae. aegypti was
restricted to Noumea and its suburbs [65]. The first mention of this species in Ouvea was
reported in 1962 [6]. Whereas travel between Noumea and Poindimie is easy by road, Ouvea
has remained quite isolated from the main island, which is corroborated by the Ae. aegypti-free
status of the other Loyalty islands until the end of the 1990s[66, 67].

The mosquitoes of Noumea, Suva and Papeete were more genetically mixed. New Caledo-
nia, French Polynesia and Fiji have the largest economies in the South Pacific region [68], thus
underlining the importance of the sea-ports in this specific structure. Indeed, in New Caledo-
nia, the Nickel industry represents 75% of the export of goods: mainly to Asia, Australia and
Europe. For mosquitoes collected in central Pacific islands, a differentiation was observed
between Lautoka (FJ) and Havelu (TG). The genetic link between Fiji and Tonga could be
explained by the relative proximity of these two island countries and the volume of trade
between them. Furthermore, the goods and services importation/exportation are promoted
between English or French speaking countries [12].
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Environmental conditions and ecosystems could have an impact on the structure of the Ae.
aegypti population. Insecticides used both for agriculture and vector control can exert specific
environmental constraints. Among the different island countries, insecticide use has been
implemented in different ways. In New Caledonia, malathion (organophosphate) was used
until the end of the 1980s when it was replaced by deltamethrin (pyrethroid). Malathion was
reintroduced in 2005 due to the detection of mosquito resistance to pyrethroids and used until
present day [69]. In French Polynesia, only malathion was used before the year 2000. Mala-
thion was then used alternatively with pyrethroids. In Tonga, malathion was used until the end
of the twentieth century and was then replaced by pyrethroids. These different vector control
strategies could have an impact on the genetic structure of the Ae. aegypti population [64],
(due to genetic bottlenecks) along with other environmental factors (climate, human
influence. . .).

This is, to our knowledge, the first study carried out on a Pacific scale dealing with the
genetic diversity and phylogeny of Ae. aegypti. The genetic specificity could have an impact on
vector competence for the arbovirus especially for dengue virus [70–72]. In the Pacific region,
the arboviral outbreaks impacted island countries at different times [4]. The genetic structure
in the Pacific region indicates a western, central and eastern differentiation between the Ae.
aegypti samples. Previous studies reported that the vector competence of Ae. aegypti for dengue
virus is linked to the mosquito genetic factor and to the dengue virus strain [72, 73]. Thus char-
acterization of vector competence for arboviruses in Pacific island mosquitoes is also an impor-
tant issue deserving investigation.

Supporting Information
S1 Fig. Factorial Correspondence Analysis of combined CO1-ND4 genes. The colour indi-
cates the geographical sample origin: blue represents American samples, green Asian samples,
purple African samples, yellow Australian samples and red Pacific samples. Both axis represent
77.9% of the variability in the dataset.
(PDF)

S1 Table. Frequencies of CO1 and ND4 haplotypes for all sample sites and for each island.
NNumber of individual analyzed. Roman numerals indicate the name of CO1 or ND4 haplo-
types.
(PDF)

S2 Table. MtDNA haplotype sequences for CO1 and ND4 across Ae. aegypti Pacific sam-
ples. N corresponds to the number of sample belonging to this haplotype.
(PDF)

S3 Table. MtDNA sequence informations of Pacific samples and reference sequences.
(PDF)
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