
Chapter 14
Arbovirus Detection in Vectors

David T. Williams, Prasad Paradkar, and Stephan Karl

Abstract Detection of arthropod-borne (arbo)viruses is a fundamental element of
mosquito surveillance programmes. Moreover, recent advances in modifying mos-
quitoes for managing arbovirus vector populations rely on sensitive arbovirus
detection methods, which are applied at various stages of development, evaluation
and production of modified mosquitoes. An increasingly wide range of mosquito
trapping, sampling and testing options are available. Although virus culture will
remain important for isolating viruses for research and reference purposes, the
widespread use and application of real-time reverse transcription polymerase chain
reaction (RT-PCR) offers rapid and cost-effective workflows for detecting arbovirus
nucleic acid. Advances in next-generation sequencing (NGS) techniques and bioin-
formatics approaches have also enabled increasingly rapid, accurate and inexpensive
arbovirus genome sequencing that can be employed following virus detection using
conventional methods or used independently as a stand-alone platform. Unbiased
NGS is also a powerful tool for arbovirus discovery and metagenomics. Continued
advances in arbovirus detection methods and approaches are expected to provide
ever more sophisticated tools for controlling and responding to the threat of patho-
genic arboviruses.
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14.1 Introduction

As advances are made in the development and application of modified mosquito
vectors of human pathogens, the ability to accurately detect target pathogens is
critical to assess the effectiveness of genetic or biological modifications to inform
field trials and their longer-term implementation. Ensuring laboratory-reared mos-
quito colonies are pathogen free is important to ensure the integrity of research
results. Similarly, arbovirus testing of initiating colonies for modified mosquito
production and subsequent screening of derived mass-reared colonies intended for
field release is an important element of quality control and biosafety. Detection of
vector-borne pathogens also underpins mosquito surveillance programmes for pub-
lic health purposes: estimation of infection rates allows an assessment of arbovirus
transmission risk, while early detection facilitates focussed control efforts. This
chapter will focus on mosquito trapping methods and laboratory diagnostic tech-
niques used to detect the major arthropod-borne (arbo)viruses of global public health
concern, namely, the flaviviruses dengue virus (DENV), Zika virus (ZIKV), Japa-
nese encephalitis virus (JEV) and West Nile virus (WNV) and the alphavirus
chikungunya virus (CHIKV). Each of these viruses has demonstrated an alarming
propensity to spread and emerge into new geographic areas and cause disease
outbreaks in human and animal populations.

DENV is found throughout the tropics with transmission occurring in over
100 countries and approximately four billion people at risk (Brady et al. 2012). An
estimated 394 million infections occurred in 2010, with the majority (~70%) occur-
ring in Asia (Bhatt et al. 2013). First described in Uganda, ZIKV has now spread to
over 80 countries in Africa, Asia, the Pacific and the Americas. ZIKV has more
recently emerged as an important cause of neurological disease (e.g. congenital Zika
and Guillain-Barre syndrome) following major outbreaks in Latin America (Gulland
2016), which were preceded by large outbreaks in the Pacific (Duffy et al. 2009;
Musso et al. 2018). JEV is the most important cause of human viral encephalitis in
Southeast Asia. Approximately 68,000 human cases occur annually in JE-endemic
areas, with high rates of associated morbidity (~30–50%) and mortality (20–30%)
(Campbell et al. 2011). WNV is one of the most widely distributed flaviviruses and
has been found in Africa, the Middle East, Europe, Asia, Australasia and North
America. It has caused large and unexpected outbreaks involving high incidences of
neurological infection in humans in Europe and the United States (Hayes and Gubler
2006; Sambri et al. 2013), as well as outbreaks of equine neurological disease and
avian mortality events (Castillo-Olivares and Wood 2004; Frost et al. 2012). The
alphavirus CHIKV is a major cause of debilitating arthralgia and has been the cause
of explosive epidemics. CHIKV has a similar distribution to DENV and can now be
found across the tropics. In the past 15 years, CHIKV has spread to the Indian
Ocean, the Caribbean and Central and South America; autochthonous transmission
has also occurred in Europe and the United States (reviewed in Weaver and Forrester
2015).
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These viruses share common mosquito vectors: Aedes aegypti and Ae. albopictus
are major vectors for DENV, ZIKV and CHIKV, while Culex species mosquitoes are
the main vectors for JEV and WNV. Despite this, major vectors for each virus can
vary between regions. For example, Culex tritaeniorhynchus is the main vector for
JEV in much of Southeast Asia; however, at the edge of its southeastern range in
Australasia, the main vector is Cx. annulirostris (Ritchie et al. 1997). Hence,
understanding the breadth of arbovirus vectors through surveillance is important
for focussing control efforts.

Traditional methods of vector surveillance comprise of mosquitoes being col-
lected, identified, pooled by species or other taxonomic grouping, and sent to the
laboratory where they are tested for virus infection status using one or more
techniques (see below). This approach may be applied for early detection of arbo-
viruses of medical or veterinary importance, determination of virus infection rates,
identification of vectors and vector abundance. Depending on resources, surveillance
activities may be undertaken year-round in areas endemic for arboviruses or on a
seasonal basis in epidemic regions. In areas with low-level mosquito infections or
when trapping is undertaken early in the transmission season, efforts should be
directed towards performing targeted surveillance at ‘hotspots’ where a high likeli-
hood of arbovirus presence is suspected; as vector populations increase later in the
season, the number of sampling sites should be expanded for broader monitoring.

14.2 Mosquito Traps for Arbovirus Surveillance

A large variety of mosquito traps have been developed for commercial and research
and surveillance purposes. Mosquito traps use attractants that are based on olfactory,
visual and sometimes temperature and sound signals that mosquitoes are able to
sense with their antennae, compound eyes or palpi (Takken and Kline 1989; Daniel
2006).

Commercial traps mostly intended, e.g. for private usage, are usually designed to
attract and kill as many mosquitoes and other nuisance insects as possible. They are
available in many shape, size and price categories (Mosquito World n.d.). High-end
models combine different attractants, mostly UV light, CO2 gas either produced by
burning propane or emanated from cylinders, other olfactory baits (e.g. octenol
chips) and heat. Many traps use a fan or otherwise generated suction to aspirate
mosquitoes once they have come close to the trap (Ritchie et al. 2007).

Traps used in research studies and for vector surveillance are often intended to
target mosquito species more selectively and tend to be designed to allow for less
destructive sampling, so that the collected mosquitoes can be studied further. In
addition, collections involving very many traps, or in studies in remote locations,
ease of use and extended operating duration without maintenance are desirable trap
features. As such, traps used in research or for surveillance often use more specific
cues or attractants believed to lure specific mosquito species or sub-populations
(e.g. gravid, male etc.).
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Widely used Biogents (BG) Sentinel Traps, for example, rarely use a light source
but attract females of many Aedes and Culex mosquito species simply by colour
contrast of a white lid with a black intake. Once mosquitoes have come close to the
intake opening, suction from a fan aspirates them into a catch bag. These traps can
further be baited with CO2 or specific lures to attract other mosquito species as well
(Maciel-de-Freitas et al. 2006; Williams et al. 2006).

CDC miniature light traps, widely used for research and surveillance purposes,
use incandescent white, coloured LED or UV light as a main attractant. They, too,
are equipped with an intake fan and can be set up with CO2 cylinders (Mathenge
et al. 2004).

Some traps developed for research and surveillance purposes, such as Passive
Box Traps, focus on collecting nucleic acid samples deposited by mosquitoes,
e.g. for arbovirus detection. In Passive Box Traps, nucleic acids are deposited by
the mosquitoes while sitting on a (honey-baited) filter paper card. The card can then
be removed and subjected to molecular analyses (Ritchie et al. 2013).

Gravid or oviposition traps are designed to trap especially gravid female mos-
quitoes by resembling a container ovipositioning site. Gravid mosquitoes are older
and have blood-fed and are thus more likely to carry arboviruses (Liew et al. 2019;
Alemayehu et al. 2018). These traps are usually black containers filled with,
e.g. hay-infused water and a geometry allowing for entry, but not exit of the
mosquitoes.

Promising new trap developments include, for example, the Male Aedes Sound
Trap (MAST), which uses a small speaker assembly to imitate the wingbeat fre-
quency of female mosquitoes, thereby attracting males in the vicinity. These traps
can operate for weeks without maintenance, making them an attractive alternative
for research and surveillance in remote locations (Staunton et al. 2020, 2021).

Trapping efficiency using any of the aforementioned methods is low, in particular
for some anophelines, such as An. farauti. Alternatives for adult mosquito collection
include the widely used human landing catches (Mathenge et al. 2004), barrier
screen (or vertical barrier) methods (Keven et al. 2019), animal- or human-baited
double net or tent traps (Govella et al. 2009; Tangena et al. 2015), sweep net
collections and resting collections using, for example, manually operated aspirators,
such as Prokopacks (Vazquez-Prokopec et al. 2009). In particular human landing
catches may be viewed as ethically controversial, as humans are exposed directly to
potentially infectious mosquito bites. However, it is believed that normally, expo-
sure in human landing catch collections is equal or less than that normally experi-
enced by the collectors (Gimnig et al. 2013). In addition, studies are usually expected
to provide malaria prophylaxis and treatment free of charge to collectors.
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14.3 Mosquito Sampling

Processing pooled samples of mosquitoes comes with inherent limitations. Testing
individual caught mosquitoes offers a very precise means of determining infection
rate. However, mosquito populations often have very low carriage rates, and, to
increase the probability of detection, large numbers of mosquitoes are usually
required. Under such circumstances, individual mosquito testing may be impractical.
Gu and Novak (2004) showed that detection of low levels of mosquito infections
requires large samples (>1600 individuals) for a high probability of detection. The
authors recommended an intensified sampling strategy at sites where potential vector
mosquitoes are abundant, or in areas with a history of arbovirus circulation. Such an
approach is cost-effective and increases the probability of detection, which is
advantageous if the primary objective of the surveillance activity is early detection.

Estimation of mosquito infection rates is important for determining risk of
transmission. In this regard, it has been shown that in situations where mosquito
infection rates are high (e.g. peak season) and there may be more than one infected
mosquito per pool, the use of variable size pools provides more accurate estimates of
infection rates than constant size pooling (Gu and Novak (2004).

The size of mosquito pools for testing can vary in size, but typically pool sizes of
25–100 mosquitoes have been used (e.g. Johansen et al. 2000; Kauffman et al.
2003). However, arboviruses can be detected in larger pools of mosquitoes. Using
real-time RT-PCR, a single WNV-infected mosquito could be reliably detected in a
pool of 500, and virus isolation and commercial antigen capture assays could detect
virus in pools of 200 mosquitoes (Sutherland and Nasci 2007). Tang et al. (2020)
showed the detection of CHIKV, WNV, ZIKV and Usutu virus could be achieved in
pools comprising up to 1600 mosquitoes using real-time RT-PCR. Molecular testing
of pools of 100–1000 mosquitoes is now routinely undertaken by some surveillance
programmes for early detection of arboviruses.

Following collection, mosquitoes are typically sorted (e.g. male/female, blood-
fed), speciated and pooled, ideally on cold tables to minimise degradation. To
preserve samples, freezing whole traps soon after collection or pools following
sorting is recommended. Nucleic acid preservative solutions can also be used for
molecular testing applications. Mosquito pools are typically homogenised using
sterile glass beads or ball bearings in PBS or virus transport medium solutions.
Clarified homogenates are then used as inoculum for selected culture systems or for
direct testing for antigen or viral RNA.

14.4 Conventional Methods of Arbovirus Detection

Effective vector surveillance requires rapid and accurate methods to identify trapped
insect samples and screen them for pathogenic arboviruses. Detection and identifi-
cation of arboviruses also facilitate research into patterns of virus activity and
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movement, by enabling genetic analysis of geographically and temporally distinct
isolates and strains. Laboratory testing of mosquitoes involves direct detection of
virus from samples or following virus isolation.

14.4.1 Virus Isolation

Historically, arbovirus isolation involved intracerebral inoculation of suckling mice,
guinea pigs or hamsters or inoculation of embryonated chicken eggs via the chorio-
allantoic or allantoic membranes or the yolk sac (Beaty et al. 1995). Furthermore, the
use of animals for scientific purposes normally requires institutional animal ethics
approval to ensure animal welfare standards are followed and adhered to. With the
establishment of cell lines, virus isolation in cell culture became the gold standard for
arbovirus detection from pools of mosquitoes. Several mosquito cell lines have been
established that are susceptible to arboviruses (Walker et al. 2014). Notably the
C6/36 clone from Ae. albopictus is susceptible to a wide range of arboviruses (Singh
1967), in part due to having a dysfunctional innate antiviral RNA interference
response (Brackney et al. 2010). A range of mammalian cell lines have also been
used to isolate arboviruses, including African green monkey kidney (Vero), rhesus
monkey kidney (LLC-MK2), baby hamster kidney (BHK), rabbit kidney (RK-13)
and pig kidney (PS) cells. The PS cell clone PSEK has also been used widely for
isolation of arboviruses; however, this should be used with caution since it is known
to harbour contaminating pestivirus. Alphaviruses and flaviviruses do not normally
cause cytopathic effect (CPE) in mosquito cells such as C6/36, and therefore further
culture in vertebrate cells in which CPE occurs and/or detection of viral antigen by
immunoassay or viral RNA by RT-PCR is required to confirm virus isolation.

Arboviruses can also be isolated using direct inoculation of laboratory colonies of
susceptible mosquitoes or mosquito larvae (Rosen and Gubler 1974; Gajanana et al.
1995; Alera et al. 2015). Susceptible mosquito species such as Ae. albopictus or
Toxorhynchites splendens are typically inoculated intracerebrally or intrathoraci-
cally with homogenate samples from pools of trapped mosquitoes. For biosafety
reasons, male Aedes mosquitoes are used as they do not ingest blood; neither male
nor female Toxorhynchites species ingest blood. Since arbovirus infection does not
overtly affect the inoculated mosquitoes, as for propagation in mosquito cell lines,
virus detection is undertaken by immunodetection or RT-PCR. A simple method to
test inoculated mosquitoes is to perform an indirect immunofluorescence test using a
virus-specific antibody on head smears (Gajanana et al. 1995).

Virus isolation techniques are costly, laborious and time-consuming and require
specialised laboratories with highly trained personnel. Virus isolation also relies on
the presence of infectious virus, which can be degraded in mishandled samples or
when cold chain from the point of collection to the laboratory cannot be maintained.
Despite these challenges, the ability to isolate and cultivate arbovirus is essential to
provide reference isolates for biological, antigenic and pathogenic characterisation,
for generating diagnostic reagents and for diagnostic test and vaccine development.
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Virus whole genome sequencing is also more efficient and reliable using high-titred
virus cultures. Although culture methods remain important in mosquito surveillance
activities, molecular methods are increasingly being used for rapid detection of
arboviruses in mosquito collections.

14.4.2 Antigen Detection by Immunodetection

Immunodetection methods are commonly employed for detection and identification
of arboviruses isolated from or using mosquitoes. These techniques employ species-
or group-specific monoclonal antibodies and include antigen capture ELISA to
detect arbovirus particles in field-collected mosquito pools, including commercially
available tests (Burkhalter et al. 2006; Gajanana et al. 1995; Konishi and Takahashi
1985; Sutherland and Nasci 2007; Kumari et al. 2011), fixed cell enzyme immuno-
assay following virus propagation (Broom et al. 1998; Johansen et al. 2000; Zhang
et al. 1984) and direct or indirect immunofluorescence assay of infected mosquito
impression smears from bioassays (Alera et al. 2015; Gajanana et al. 1995). These
methods are relatively rapid and inexpensive to perform and, in the case of the
ELISA method, can be adapted for high-throughput testing. However, as mentioned
above, for virus isolation in cell culture or mosquito bioassay, the preceding steps are
laborious and time-consuming.

14.4.3 Polymerase Chain Reaction (PCR)

Molecular testing by reverse transcription polymerase chain reaction (RT-PCR) has
become the most commonly employed tool in diagnostic and research laboratories
for detecting arbovirus genetic material in mosquito specimens or following culture.
Numerous assays have been reported, including both conventional and real-time
tests; specific examples are shown in Table 14.1 for DENV, ZIKV, JEV, WNV and
CHIKV.

Many of these assays were designed for detection of a particular virus lineage
(s) or genotype(s). Therefore, test selection should consider the lineage/genotype of
regionally circulating arboviruses. For instance, the WNV real-time PCR reported by
Pyke et al. (2004) was developed for the specific detection of WNV-KUNV (lineage
1b), found only in the Australasian region, where other WNV lineages are exotic and
alternative assays are required for their detection. For surveillance studies of several
target viruses, multiplex or generic assays can be used. These assays are useful to
support syndromic surveillance studies targeting viruses that cause similar disease
(e.g. febrile or neurological). Flavivirus or alphavirus generic assays can also be
employed; however, these can be less sensitive, particularly in the conventional
formats. Generic assays—when coupled with sequencing—can be useful for
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Table 14.1 RT-PCR assays used to detect dengue, Zika, Japanese encephalitis, West Nile and
chikungunya viruses in mosquitoes

Virus Format Genome target(s) References

Dengue virus
1 to 4

Conventional E gene Balingit et al. (2020)

Capsid/prM genes Johnson et al. (2005)

Real time NS5 (DENV-1)
E gene (DENV-2)
prM/M gene (DENV-3)
prM/M-E genes (DENV-4)

Balingit et al. (2020),
Johnson et al. (2005)

NS5 Hue et al. (2011)

Zika Conventional E gene Faye et al. (2008)

NS5 gene Balm et al. (2012)

Real time NS5 Faye et al. (2013)

M-E genes
E gene

Lanciotti et al. (2008)

NS1 gene
E genes

Pyke et al. (2014)

Japanese
encephalitis

Real time NS5–30UTR Pyke et al. (2004)

West Nile Conventional E gene Johnson et al. (2001)

Real time E gene
30UTR

Lanciotti et al. (2000)

NS5-30UTR Pyke et al. (2004)

Chikungunya Conventional nsp1 gene Hasebe et al. (2002)

Real time E1 gene van den Hurk et al. (2010)

nsp1 gene
nsp4 gene

Lanciotti et al. (2007)

Flavivirus
generic

Conventional NS5-30UTR Pierre et al. (1994)

E gene Gaunt and Gould (2005)

NS5 gene Scaramozzino et al.
(2001)

Real time NS5 gene Moureau et al. (2007)

NS5 Patel et al. (2013)

Alphavirus
generic

Conventional nsP1 gene Pfeffer et al. (1997)

nsP4 gene Sanchez-Seco et al.
(2001)

nsP4 gene Grywna et al. (2010)

Real time nsP4 gene Giry et al. (2017)

Multiplex Real time 50-UTR (DENV)
nsp1 gene (CHIKV)
E gene (ZIKV)

Santiago et al. (2018)

30UTR (DENV)
NS5 gene (CHIKV)
E gene (ZIKV)

Mansuy et al. (2018)

NS5 (YFV, JEV, WNV, SLEV,
DENV-1 to -4)

Chao et al. (2007)

NS2A (WNV, JEV) Barros et al. (2013)
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inexpensive and rapid identification of virus isolates from mosquito samples when
other available tests have failed.

Other formats of molecular testing have also been reported for arbovirus labora-
tory diagnosis. RT-LAMP assays have been published for the detection of JEV (Liu
et al. 2012; Parida et al. 2006), WNV (Parida et al. 2004), ZIKV (Silva et al. 2019),
DENV (Lopez-Jimena et al. 2018) and CHIKV (Parida et al. 2007). Multiplex
RT-LAMP assays have also been reported for detecting combinations of DENV,
ZIKV, CHIKV, JEV or WNV (Li et al. 2011; Yaren et al. 2017). LAMP offers
comparable performance to real-time RT-PCR, in a simple and convenient assay
format without the need for sophisticated equipment or highly trained personnel. At
the other end of the technology spectrum, RT-PCR-based microsphere array assays
have been reported for the multiplex detection of medically important flaviviruses
and alphaviruses from mosquitoes (Foord et al. 2014; Glushakova et al. 2019).
Although these assays require specialised equipment and trained staff to run the
assays, they can offer high-throughput multiplexed testing for arbovirus surveillance
activities.

Selection of a molecular test should also consider prior validation using infected
mosquitoes. In-house test verification is recommended to ensure the assay is fit for
purpose in the laboratory where it will be applied. This may be undertaken using
mosquito samples that are known to be infected from prior testing or using mosquito
pools spiked with a known quantity of the target virus. This is to ensure that variation
in laboratory conditions and equipment, extraction methods and reaction chemistries
do not affect the sensitivity or performance of the selected assay.

14.5 Next-Generation Sequencing Methods for Arbovirus
Surveillance

Conventional diagnostic test methods typically target certain pathogens based on
likelihood and risk; however, this approach fails to detect novel or unexpected
arboviruses when present in mosquito samples. Next-generation sequencing
(NGS) describes a DNA or RNA sequencing technology which has revolutionised
genomic research (Behjati and Tarpey 2013) and has been applied to vector-borne
disease surveillance for the identification of both known and previously unknown
arboviruses. Although several NGS platforms are available, they all perform
sequencing of millions of small fragments of nucleotides in parallel. Appropriate
bioinformatics are then used to remove host sequences and assemble target sequence
fragments either as de novo synthesis or mapped to known genomes. Total RNA
sequencing enables non-targeted, high-throughput detection and characterisation of
viruses in a sample, such as mosquitoes.

Combined with metabarcoding, NGS can allow the rapid identification of large
numbers of mosquitoes with simultaneous screening for pathogens (Batovska et al.
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2018). Based on the sensitivity of the technique, this method also can quantify the
number of mosquitoes in a trap. In Australia, viral metagenomics has been used for
the identification of multiple arboviruses, including novel rhabdoviruses,
bunyaviruses (Quan et al. 2011; Coffey et al. 2014; Briese et al. 2016),
ephemeroviruses (Blasdell et al. 2014) and mesoniviruses (Warrilow et al. 2014)
from field collected mosquitoes.

By combining unbiased sequencing, rapid data analysis and comprehensive
reference databases, metagenomics can be applied for hypothesis-free, universal
pathogen detection, providing a promising approach to improved surveillance of
arboviruses. Several studies have used NGS approaches to detect viruses in individ-
ual mosquitoes or pools of mosquitoes using various technologies. There are cur-
rently several NGS platforms available for use, including Illumina (Chandler et al.
2015), Ion Torrent (Hall-Mendelin et al. 2013) and Oxford Nanopore (Batovska
et al. 2017), each with its own benefits and limitations. The laboratory workflow is
also determined by the technology used, and this can limit feasibility of usage. It is
important that the surveillance laboratory should clearly define the intended use,
range of pathogens and reporting workflow as this will determine choice of data
analysis. Since bioinformatics forms a key aspect of the workflow, it is important to
validate the bioinformatics pipeline along with laboratory techniques. The bioinfor-
matics analyses chosen to process the NGS reads (e.g., Flygare et al. 2016; Andrusch
et al. 2018; Oulas et al. 2015; Naccache et al. 2014) can also affect sensitivity and
specificity. A common method used to detect viruses in a sample is by mapping
reads back to viral reference sequences. However, when dealing with short reads,
this can lead to false-positive results if a virus is present with partial sequence
homology to a virus of interest. Recent advances in bioinformatics can overcome
this by de novo assembly of reads to produce longer contiguous sequences (contigs)
(Schlaberg et al. 2017).

There are numerous benefits of using NGS for surveillance of mosquito-borne
pathogens. Advances in the NGS technology in recent years have allowed for
detection of all viruses in mosquito samples in a cost-effective and unbiased manner.
This methodology can be used to detect both known and unknown viruses and
bacteria. Due to the untargeted approach, the method allows for accurate detection of
mosquito species as well and can serve as an early warning system for invasive
mosquitoes (Batovska et al. 2018). With appropriate protocols, it can be very
sensitive, detecting low quantities of pathogen nucleic acid. Multiplexing with
barcoding can help in higher throughput of sample processing (Batovska et al.
2018). NGS data analysis with sufficient read depth and coverage can also inform
about mutation and variants circulating or evolving in the environment. This not
only can help in performing molecular epidemiology (Ko et al. 2020; Bialosuknia
et al. 2019; Maan et al. 2015; Johnson et al. 2012) and identifying source and sinks
of pathogens in mosquito populations but also can help in formulating appropriate
strategy against vector and pathogen spread.

The major drawback of use of NGS in surveillance is the infrastructure cost of
setting up the instruments. The high costs, long sequencing times and slow,
unwieldy data analysis tools have made it impractical for wider use of these
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methods. With advances in instrumentation and sequencing chemistries, the costs for
sequencing are dropping and the amount of data being generated is increasing;
however, the current bottleneck is the bioinformatics pipeline for large data analysis
and appropriate interpretation.

Appropriate sample preparation determines the analytical sensitivity and speci-
ficity of the assay, which is important in assessing the transmission risk and temporal
changes in virus abundance. Samples can be a single mosquito, pool of mosquitoes
or honey-baited FTA cards (Birnberg et al. 2020). The quality of the generated data
depends on the stability of RNA in the sample; hence appropriate storage conditions
of samples, such as in RNAlater, are necessary. Sensitivity of detection can be
increased artificially by enriching for arbovirus using size filtration (Sadeghi et al.
2018), PEG precipitation or sequence-independent amplification (Xiao et al. 2018).
While this does increase the number of viral sequences, enrichment can also
introduce bias (Conceição-Neto et al. 2015). An alternate way to increase the
number of viral sequences is by depleting the mosquito RNA, generally by targeting
highly abundant ribosomal RNA (rRNA). A variety of rRNA depletion kits are
available; however, these are not specific to mosquitoes, and so custom probes based
on mosquito rRNA sequences need to be generated (Fauver et al. 2019).

There are also bioinformatics tools and approaches to increase the specificity of
pathogen sequence detection, such as performing de novo assembly, where short
reads are assembled into longer contigs, and then comparing these contigs to a
database containing viral reference sequences. This approach can improve specific-
ity because longer fragments are taxonomically classified with greater accuracy
(McHardy et al. 2007).

A recent study (Batovska et al. 2019) in a lab setting showed that NGS was highly
specific in identification of Ross River virus or Umatilla virus in mosquito pools
spiked with these viruses, recovering whole genome information and detecting
19 other viruses. However, the method was not as sensitive as RT-qPCR or
RT-ddPCR.

NGS generates several million to billion short-read sequences of the DNA and
RNA isolated from a sample. In contrast to traditional Sanger sequencing, with read
lengths of 500–900 base pairs (bp), short reads of NGS range in size from 75 to
300 bp depending on the application and sequencing chemistry. Newer NGS
technologies such as those from PacBio (Rhoads and Au 2015), Nanopore and
10� Genomics (Singh et al. 2019) enable longer read sequences of more than 10 kb.

Until recently, NGS was restricted to the laboratory due to the size of the
sequencers available. MinION by Oxford Nanopore Technologies provides a pow-
erful tool for in-field surveillance, allowing non-targeted (unbiased) detection of
viruses in a sample within a few hours. The MinION is a relatively low-cost,
handheld sequencer. Although it’s sequencing accuracy is considerably lower than
Illumina MiSeq and HiSeq, with an error rate of approximately 5–10% (Tyson et al.
2018) for the recent MinION R9 chemistry with 2D (double-strand) reads, compared
to <0.1% for the Illumina sequencers (Houldcroft et al. 2017), MinION makes it up
by producing long reads (up to 233 kb) in real time (Jansen et al. 2017) and
achieving >99% accuracy post-data analysis (Wang et al. 2015). It has recently
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been demonstrated that the MinION can be used for metagenomic arbovirus detec-
tion from infected mosquitoes (Batovska et al. 2017), so it could be used during
arbovirus outbreaks. Even with its limitations, it is expected that MinION will play a
significant role in making sequencing available in real time, helping appropriate
public health response.

Xenosurveillance is a novel surveillance technique that leverages and extends
mosquito surveillance activities to the detection of non-vectored pathogens using
PCR- or NGS-based methods. With mosquitoes feeding on a variety of vertebrate
hosts, they also have potential to act as samplers for circulating viruses present in
host blood. This can offer an alternative to direct sampling of hosts (such as sentinel
animals), with mosquitoes acting as ‘syringes’. Other than acting as surveillance for
arboviruses (Yang et al. 2015), it can also serve as surveillance for non-vector-borne
pathogens (Grubaugh et al. 2015).

These emerging technologies have also translated into trap development as well
with development of the next generation of mosquito traps. Other than previously
mentioned use of NGS on honey-baited FTA cards to detect circulating viruses in
mosquito traps, technology companies such as Microsoft are developing mosquito
traps (‘Microsoft Premonition’ n.d.) which have in situ NGS technology. The idea
behind this is using drone technology to position these traps at select locations and
using baits to attract female mosquitoes, which are photographed followed by whole
genome sequencing to generate pathogen profiles. An alternative to this which has
also been proposed includes in situ technology to detect specific arboviruses using
lateral flow technology. Although these traps are not used widely, they are currently
being trialled in various locations for feasibility studies.

14.6 Conclusion

In recent years there have been numerous advances in the methods and approaches
used for arbovirus detection. Together with tried and tested conventional methods,
there is an array of options that can be applied to different situations and conditions,
as well as budgets and resources. While most of these methods have been developed
for and applied to arbovirus surveillance programs, they also have a place in the
laboratories of researchers working on modified mosquitoes and the companies and
factories that rear the millions of modified mosquitoes required for field release. In
the future, molecular diagnostic methods such as real-time RT-PCR will likely
remain a workhorse platform for arbovirus laboratories; however, it is expected
that advancements in NGS technologies will continue, providing increasingly inex-
pensive, accessible and sensitive platforms that can be applied to arbovirus surveil-
lance and mosquito testing in the field and laboratory.
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